一、教学目标
【知识与技能】
掌握多边形内角和公式,并能够运用公式正确的求出多边形的内角和。
【过程与方法】
通过对“多边形内角和公式”的探究,提析问题、解决问题的能力,同时充分领会数学转化思想。
【情感态度与价值观】
通过公式的猜想、归纳、推断一系列过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。
二、教学重难点
【重点】
探究多边形内角和的公式。
【难点】
多边形内角和公式的推导过程。
三、教学过程
(一)导入新课
温故知新导入法,回顾小学课程学习的三角形内角和等于180度,以及推导过程进而引出四边形五边形等多边形的内角和公式。
(二)探究新知
1.探索四边形、五边形、六边形的内角和
师生活动:教师引导学生分析问题解决的思路——如何利用三角形的内角和求出四边形的内角和,进而发现:只需连接一条对角线,即可将一个四边形分割为两个三角形。学生说出证明过程,教师板书。
追问1:这里连接对角线起到什么作用?
师生活动:学生回答——将四边形分割成两个三角形,进而将四边形的内角和问题转化为两个三角形所有内角的和的问题。
追问2:类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?
师生活动:学生先独立思考,再分组讨论,然后代表汇报。学生类比四边形内角和的研究过程,得出从五边形的一个顶点出发可以作2条对角线,将五边形分割成3个三角形(如图)。进而得出五边形的内角和为(5-2)×180°=540°。教师进一步启发学生从顶点或边两个角度解释(从顶点的角度:所取顶点与相邻的两个顶点无法连城对角线,所以少了两个三角形;从边的角度:所取顶点与它所在的两条边不能构成三角形,所以少了两个三角形),进而可以得到五边形的内角和为(5-2)×180°=540°。
追问3:如图,从六边形的一个顶点出发,可以作几条对角线?它将六边形分为几个三角形?六边形的内角和等于180°×?
师生活动:学生类比四边形、五边形内角和的研究过程回答追问3.
更多教师招聘面试内容,请访问新公教育 QQ群671748890
新公教育为你提供更多考试资讯和招聘公告可关注微信公众号【新公教育(cqxgjy)】